Escuela República de Nicaragua 231 2010

22 julio 2009

Cerámicos Wikipedia (enciclopedia libre)

Filed under: Cerámicos — Escuela Nicaragua 231 @ 5:42 pm

Cerámicos

La palabra cerámica deriva del vocablo griego keramos, cuya raíz sánscrita significa “quemar”. En su sentido estricto se refiere a la arcilla en todas sus formas. Sin embargo, el uso moderno de este término incluye a todos los materiales inorgánicos no metálicos que se forman por acción del calor.

Hasta los años 1950, los materiales más importantes fueron las arcillas tradicionales, utilizadas en alfarería, ladrillos, azulejos y similares, junto con el cemento y el vidrio. El arte tradicional de la cerámica se describe en alfarería. También puede buscarse la historia del rakú, singular técnica milenaria oriental.

Históricamente, los productos cerámicos han sido duros, porosos y frágiles. El estudio de la cerámica consiste en una gran extensión de métodos para mitigar estos problemas y acentuar las potencialidades del material, así como ofrecer usos no tradicionales. Esto también se ha buscado incorporándolas a materiales compuestos como es el caso de los cermets, que combinan materiales metálicos y cerámicos.

Ejemplos de materiales cerámicos

Propiedades mecánicas de la cerámica

Los materiales cerámicos son generalmente frágiles o vidriosos. Casi siempre se fracturan ante esfuerzos de tensión y presentan poca elasticidad, dado que tienden a ser materiales porosos. Los poros y otras imperfecciones microscópicas actúan como entallas o concentradores de esfuerzo, reduciendo la resistencia a los esfuerzos mencionados.

Estos materiales muestran deformaciones plásticas. Sin embargo, debido a la rigidez de la estructura de los componentes cristalinos hay pocos sistemas de deslizamientos para dislocaciones de movimiento y la deformación ocurre de forma muy lenta. Con los materiales no cristalinos (vidriosos), la fluidez viscosa es la principal causa de la deformación plástica, y también es muy lenta. Aun así, es omitido en muchas aplicaciones de materiales cerámicos.

Tienen elevada resistencia a la compresión si la comparamos con los metales incluso a temperaturas altas (hasta 1.500 ºC). Bajo cargas de compresión las grietas incipientes tienden a cerrarse, mientras que bajo cargas de tracción o cizalladura las grietas tienden a separarse, dando lugar a la fractura.

Los valores de tenacidad de fractura en los materiales cerámicos son muy bajos (apenas sobrepasan el valor de 1 MPa.m1/2), valores que pueden ser aumentados considerablemente mediante métodos como el reforzamiento mediante fibras o la transformación de fase en circonia.

Una propiedad importante es el mantenimiento de las propiedades mecánicas a altas temperaturas. Su gran dureza los hace un material ampliamente utilizado como abrasivo y como puntas cortantes de herramientas.

Comportamiento refractario

Protección térmica del transbordador espacial

Algunos materiales cerámicos pueden soportar temperaturas extremadamente altas sin perder su solidez. Son los denominados materiales refractarios. Generalmente tienen baja conductividad térmica por lo que son empleados como aislantes. Por ejemplo, partes de los cohetes espaciales son construidos de azulejos cerámicos que protegen la nave de las altas temperaturas causadas durante la entrada a la atmósfera.

Por lo general los materiales cerámicos presentan un buen comportamiento a alta temperatura mientras que pueden sufrir roturas por choque térmico a temperaturas inferiores.

  • Termofluencia: La conservación de las propiedades mecánicas a altas temperaturas toma gran importancia en determinados sectores como la industria aeroespacial. Los materiales cerámicos poseen por lo general una buena resistencia a la termofluencia. Esto es debido principalmente a dos factores en el caso de cerámicos cristalinos: altos valores de temperatura de fusión y elevada energía de activación para que comience la difusión.
  • Choque térmico: Se define como la fractura de un material como resultado de un cambio brusco de temperatura. Esta variación repentina da lugar a tensiones superficiales de tracción que llevan a la fractura. Entre los factores que condicionan la resistencia al choque térmico toma gran importancia la porosidad del material. Al disminuir la porosidad (aumentar la densidad) la resistencia al choque térmico y las características de aislamiento se reducen, mientras que la resistencia mecánica y la capacidad de carga aumentan. Muchos materiales son usados en estados muy porosos y es frecuente encontrar materiales combinados: una capa porosa con buenas propiedades de aislamiento combinada con una delgada chaqueta de material más denso que provee resistencia.

Tal vez sea sorprendente que estos materiales puedan ser usados a temperaturas en donde se licúan parcialmente. Por ejemplo, los ladrillos refractarios de dióxido de silicio (SiO2), usados para recubrir hornos de fundición de acero, trabajan a temperaturas superiores a 1650 °C (3000 °F), cuando algunos de los ladrillos comienzan a licuarse. Diseñados para esa función, una situación sin sobresaltos requiere un control responsable sobre todos los aspectos de la construcción y uso.

Comportamiento eléctrico

Una de las áreas de mayores progresos con la cerámica es su aplicación a situaciones eléctricas, donde pueden desplegar un sorprendente conjunto de propiedades.

Aislamiento eléctrico y comportamiento dieléctrico

La mayoría de los materiales cerámicos no son conductores de cargas móviles, por lo que no son conductores de electricidad. Esto se debe a que los enlaces iónico y covalente restringen la movilidad iónica y electrónica, es decir, son buenos aislantes eléctricos. Cuando son combinados con fuerza, permite usarlos en la generación de energía y transmisión.

Las líneas de alta tensión son generalmente sostenidas por torres de transmisión que contienen discos de porcelana, los cuales son lo suficientemente aislantes como para resistir rayos y tienen la resistencia mecánica apropiada como para sostener los cables.

Una sub-categoría del comportamiento aislante es el dieléctrico. Un material dieléctrico mantiene el campo magnético a través de él, sin inducir pérdida de energía. Esto es muy importante en la construcción de condensadores eléctricos.

La cerámica dieléctrica es usada en dos áreas principales: la primera es la pérdida progresiva de dielectricidad de alta frecuencia, usada en aplicaciones tales como microondas y radio transmisores; la segunda, son los materiales con alta dielectricidad constante (ferroeléctricos). Aunque la cerámica dieléctrica es inferior frente a otras opciones para la mayoría de los propósitos, generalmente ocupa estos dos dichos muy bien.

Superconductividad

Bajo ciertas condiciones, tales como temperaturas extremadamente bajas, algunas cerámicas muestran superconductividad. La razón exacta de este fenómeno no es conocida, aunque se diferencian dos conjuntos de cerámica superconductora.

El compuesto estequimétrico YBa2Cu3O7-x, generalmente abreviado YBCO o 123, es particularmente muy conocido porque es fácil de hacer, su manufactura no requiere ningún material particularmente peligroso y tiene una transición de temperatura de 90 K (lo que es superior a la temperatura del nitrógeno líquido, 77 K). La x de la fórmula se refiere al hecho que debe ser ligeramente deficiente en oxígeno, con un x por lo general cercano a 0.3.

El otro conjunto de cerámicas superconductoras es el diboruro de magnesio. Sus propiedades no son particularmente destacables, pero son químicamente muy distintos a cualquier otro superconductor en que no es un complejo de óxido de cobre ni un metal. Debido a esta diferencia se espera que el estudio de este material conduzca a la interiorización del fenómeno de la superconductividad.

Semiconductividad

Hay cierto número de cerámicas que son semiconductivas. La mayoría de ellas son óxidos de metales de transición que son semiconductores de tipos II-IV, como el óxido de zinc.

La cerámica semiconductora es empleada como sensor de gas. Cuando varios gases son pasados a través de una cerámica policristalina, su resistencia eléctrica cambia. Ajustando las posibles mezclas de gas, se pueden construir sensores de gas sin demasiado costo.

Ferroelectricidad, piezoelectricidad y piroelectricidad

Un material ferroeléctrico es aquel que espontáneamente posee una polarización eléctrica cuyo sentido se puede invertir mediante aplicación de un campo eléctrico externo suficientemente alto (histéresis ferroeléctrica). Estos materiales exhiben múltiples propiedades derivadas de su polarización espontánea, en ausencia de un campo eléctrico externo, y de la posibilidad de su inversión (memorias de ordenador). La polarización espontánea puede modificarse mediante campos eléctricos (electrostricción) o de tensiones mecánicas (piezoelectricidad) externos y mediante variaciones de la temperatura (piroelectricidad). La polarización espontánea y su capacidad de modificación es también el origen de la alta constante dieléctrica o permitividad de los ferroeléctricos, que tiene aplicación en condensadores.

Un material piezoeléctrico es aquel que, debido a poseer una polarización espontánea, genera un voltaje cuando se le aplica presión o, inversamente, se deforma bajo la acción de un campo eléctrico. Cuando el campo eléctrico aplicado es alterno, este produce una vibración del piezoeléctrico. Estos materiales encuentran un rango amplio de aplicaciones, principalmente como sensores -para convertir un movimiento en una señal eléctrica o viceversa-. Están presentes en micrófonos, generadores de ultrasonido y medidores de presión. Todos los ferroeléctricos son piezoeléctricos, pero hay muchos piezoeléctricos cuya polarización espontánea puede variar pero no es invertible y, en consecuencia, no son ferroeléctricos.

Un material piroeléctrico desarrolla un campo eléctrico cuando se calienta. Algunas cerámicas piroeléctricas son tan sensibles que pueden detectar cambios de temperatura causados por el ingreso de una persona a un cuarto (aproximadamente 40 microkelvin). Tales dispositivos no pueden medir temperaturas absolutas, sino variaciones de temperatura y se utilizan en visión nocturna y detectores de movimiento.

Procesado de materiales cerámicos

Las cerámicas no cristalinas (vidriosas) suelen ser formadas de fundiciones. El vidrio es formado por cualquiera de los siguientes métodos: soplado, prensado, laminado, estirado, colado o flotado.

Los materiales cerámicos cristalinos no son susceptibles de un variado rango de procesado. Los métodos empleados para su manejo tienden a fallar en una de dos categorías -hacer cerámica en la forma deseada, pro reacción in situ, o por formación de polvos en la forma deseada, y luego sinterizados para formar un cuerpo sólido. Algunos métodos usados son un híbrido de los dos métodos mencionados.

Manufactura in situ

El uso más común de este método es en la producción de cemento y concreto. Aquí, los abrasivos deshidratados son mezclados con agua. Esto da comienzo a las reacciones de la hidratación, las cuales resultan en cristales grandes, interconectados formándose alrededor de los agregados. Pasado un tiempo, esto resulta en una cerámica sólida.

El mayor problema con este método es que la mayoría de las reacciones son tan rápidas que no es posible hacer una buena mezcla, lo que tiende a impedir la construcción en gran escala. Sin embargo, los sistemas a pequeña escala pueden ser realizados mediante técnicas de depósito, en donde los diferentes materiales son introducidos sobre un substrato, donde se produce la reacción y la cerámica se forma sobre este substrato.

Métodos basados en la sinterización

Los principios de los métodos basados en la sinterización son sencillos: Una vez que la materia prima es acondicionada para su procesamiento (hornada), es introducida en el horno, con lo que el proceso de difusión compacta a la materia prima.

Los poros se achican, resultando un producto más denso y fuerte. El quemado se hace a una temperatura por debajo del punto de derretimiento de la cerámica. Siempre queda alguna porosidad, pero la verdadera ventaja de este método es que la hornada puede ser producida de cualquier modo imaginable, e incluso puede ser sinterizado. Esto lo hace una ruta muy versátil.

Existen miles de posibles refinamientos de este proceso. Algunos de los más comunes involucran presionar la hornada para darle la densidad, la quema reduce el tiempo de sinterización necesario. A veces, se añaden elementos orgánicos junto a la hornada, que son disueltos durante la quema.

Algunas veces, se agregan lubricantes orgánicos durante el proceso para incrementar la densidad. No es raro combinarlos, agregando materia orgánica y lubricantes a una hornada, y luego presionar. (la formulación de estos aditivos químico orgánicos es un arte en sí mismo). Esto es particularmente importante en la manufactura de cerámica de alto rendimiento, tales como las usadas para la electrónica, en condensadores, inductores, sensores, etc.

Puede realizarse una mezcla de componentes en vez de usar un solo polvo, y luego verterlo en el molde deseado, dejándolo secar y luego sinterizarlo. De hecho, en la alfarería tradicional es hecho de esta forma, usando una mezcla plástica que es trabajada con las manos.

Si una mezcla de materiales diferentes componentes es utilizada en una cerámica, algunas veces la temperatura de sinterización es mayor a la temperatura de fundición de alguno de sus componentes (fase líquida de sinterización). Esto genera un período más corto de sinterización comparado con el estado sólido sinterizado.

Otras aplicaciones de la cerámica

Hace un par de décadas atrás, Toyota investigó la producción de un motor cerámico el cual puede funcionar a temperaturas superiores a 3300 °C. Los motores cerámicos no requieren sistemas de ventilación y por lo tanto permiten una mayor reducción en el peso, y con esto, una mayor eficiencia en el uso de combustible. La eficiencia en el uso de combustible de un motor es también superior a más alta temperatura. En un motor metálico convencional, mucha de la energía generada desde la combustión debe ser derrochada como calor para prevenir la fundición de las partes metálicas.

A pesar de todas estas propiedades deseables, tales motores no están en producción porque la manufactura de partes cerámicas es muy dificultosa. Las imperfecciones en la cerámica conducen a quiebras y rompimientos. Dichos motores son factibles en investigaciones de laboratorio, pero las dificultades actuales sobre la manufactura impiden su producción en masa.

Fuente: http://es.wikipedia.org/wiki/Cer%C3%A1mica_t%C3%A9cnica
Anuncios

Cerámicos

Filed under: Cerámicos — Escuela Nicaragua 231 @ 5:39 pm

Materiales cerámicos. Siempre se hay pensado que el hierro y sus aleaciones son unos materiales muy fuertes resistentes, pero estos materiales tienen una gran desventaja: no soportan las altas temperaturas y son sensibles a la corrosión. Esto da pie a buscar la alternativa con otros materiales que resistan temperaturas muy elevadas. Esto sólo es posible para los nuevos materiales cerámicos. Las uniones atómicas de las cerámicas son mucho más fuertes que la de los metales. Por eso un pieza cerámica es muy eficaz, tanto en dureza como en resistencia a las altas temperaturas y choques térmicos. Además, los componentes cerámicos resisten a los agentes corrosivos y no se oxidan.

Sin embargo no todo es perfecto en estos materiales. En las cerámicas las uniones interatómicas son muy fuertes y rígidas, sin ningún gire errante, por lo que no hay ninguna posibilidad de desplazar algunos de sus átomos sin provocar la ruptura de la unión, por ello una mínima fisura de apenas el grosor de un pelo puede conducir a una catástrofe.

Bajo presión todas las fuerzas de atracción se concentran al final de la línea de la fisura, hasta que se rompen más uniones moleculares, con lo cual la grieta se amplia a una velocidad vertiginosa y la pieza se quiebra. No hay deformación sino fractura. La ruptura de la unión molecular en el hierro exige más energía que el simple desplazamiento de una capa de átomos. La misma grieta en un componente metálico llega a un punto extremo en el que las fuerzas se reparten y al aumentar la fisura hasta fractura de la pieza requeriría casi cien mil veces más energía que la necesaria en una pieza similar de cerámica. Por ello, hoy por hoy, la principal precaución de los investigadores consiste en reducir esa fragilidad

Fuente: http://www.arqhys.com/construccion/ceramica-materiales.html

20 julio 2009

Los metales (6). El aluminio.

Filed under: Metales — Escuela Nicaragua 231 @ 11:42 pm

El aluminio es un elemento químico, de símbolo Al y número atómico 13. Se trata de un metal no ferroso. Es el tercer elemento más común encontrado en la corteza terrestre. Los compuestos de aluminio forman el 8% de la corteza de la tierra y se encuentran presentes en la mayoría de las rocas, de la vegetación y de los animales. En estado natural se encuentra en muchos silicatos (feldespatos, plagioclasas y micas). Como metal se extrae del mineral conocido con el nombre de bauxita, por transformación primero en alúmina mediante el proceso Bayer y a continuación en aluminio mediante electrólisis.

Este metal posee una combinación de propiedades que lo hacen muy útil en ingeniería mecánica, tales como su baja densidad (2.700 kg/m3) y su alta resistencia a la corrosión. Mediante aleaciones adecuadas se puede aumentar sensiblemente su resistencia mecánica (hasta los 690 MPa). Es buen conductor de la electricidad, se mecaniza con facilidad y es relativamente barato. Por todo ello es el metal que más se utiliza después del acero.

Fue aislado por primera vez en 1825 por el físico danés H. C. Oersted. El principal inconveniente para su obtención reside en la elevada cantidad de energía eléctrica que requiere su producción. Este problema se compensa por su bajo coste de reciclado, su dilatada vida útil y la estabilidad de su precio.

El siguiente enlace nos ilustra sobre este utilizadísimo metal.

Los metales (V). El oro.

Filed under: Metales — Escuela Nicaragua 231 @ 11:41 pm

El oro es un elemento químico de número atómico 79 situado en el grupo 11 de la tabla periódica. Su símbolo es Au (del latín aurum).

Es un metal de blando, brillante, amarillo, pesado, maleable, dúctil que no reacciona con la mayoría de productos químicos, pero es sensible al cloro y al agua regia. El metal se encuentra normalmente en estado puro y en forma de pepitas y depósitos aluviales y es uno de los metales tradicionalmente empleados para acuñar monedas. Se utiliza en la joyería, la industria y la electrónica.

El siguiente video nos ilustra sobre este metal.

El oro es uno de los metales, que por encontrarse en estado puro en la naturaleza, se explota por el ser humanos desde la antiguedad. Las formas de obtención fueron diversas, destacando la minería. En el siguiente video podemos ver el trabajo que hacian los romanos para obtener oro en una mina redescubierta en la población de La Cabrera, en la provincia de León (España).

Pero la principal mina de oro de época romana en Hispania (España) estaba en Lás Médulas, cerca de Ponferrada, también en la provincia de León. En las Médulas se practicaba la mineria a cielo abierto.

En el entorno que hoy conocemos como Las Médulas se daban una serie de circunstancias favorables para la extracción del oro: eran tierras de aluvión con pepitas de oro; había abundante agua y la suficiente pendiente como para utilizarla como fuerza hidráulica; y existían suaves pendientes hacia el Sil para los desagües.

El sistema utilizado era el llamado «ruina montium», consistente en la captación del agua existente por medio de canales, almacenándola en depósitos para utilizarla en el momento oportuno. El sistema hidráulico de las Médulas es el más espectacular de los conocidos, por la cantidad de agua utilizada y la longitud y el gran número de ramificaciones de sus canales.

Pero en la actualidad el proceso de obtención de oro (como la explotación de casi cualquier cosa) es controvertido. Debido al avance de la técnica las minas a cielo abierto tienen un elevado impacto medioambiental. En España desde los años 80 las empresas están obligadas por la ley a dejar la zona tal cual se la encontraron, pero esto no ocurre así en otros paises. En el siguiente video (dividido en dos partes) se puede apreciar tanto el proceso de extracción del oro (muy ilustrativo) como las consecuencias que la extracción crea en el medio ambiente. Que cada uno saque sus conclusiones.

Así se hace… El acero.

Filed under: Metales — Escuela Nicaragua 231 @ 11:35 pm

Los siguientes tres videos nos ilustran el proceso de fabricación del acero. El primer video de la serie de Discovery Channel nos muestra la obtención de acero a partir de chatarras por lo que no se informa sobre lo que es un alto horno. Esto se ve el los otros dos videos, que son información corporativa de la empresa peruana Aceros Arequipa, aunque nos meten algo de publicidad es, sin embargo, muy didáctico y explica el proceso completamente.

Los metales (IV). El acero.

Filed under: Metales — Escuela Nicaragua 231 @ 11:32 pm

El acero es la aleación de hierro y carbono, donde el carbono no supera el 2,1% en peso[1] de la composición de la aleación, alcanzando normalmente porcentajes entre el 0,2% y el 0,3%. Porcentajes mayores que el 2% de carbono dan lugar a las fundiciones, aleaciones que al ser quebradizas y no poderse forjar —a diferencia de los aceros—, se moldean.

La definición anterior, sin embargo, se circunscribe a los aceros al carbono en los que éste último es el único aleante o los demás presentes lo están en cantidades muy pequeñas pues de hecho existen multitud de tipos de acero con composiciones muy diversas que reciben denominaciones específicas en virtud ya sea de los elementos que predominan en su composición (aceros al silicio), de su susceptibilidad a ciertos tratamientos (aceros de cementación), de alguna característica potenciada (aceros inoxidables) e incluso en función de su uso (aceros estructurales). Usualmente estas aleaciones de hierro se engloban bajo la denominación genérica de aceros especiales, razón por la que aquí se ha adoptado la definición de los comunes o “al carbono” que amén de ser los primeros fabricados y los más empleados, sirvieron de base para los demás. Esta gran variedad de aceros llevó a Siemens a definir el acero como «un compuesto de hierro y otra sustancia que incrementa su resistencia».

El siguiente video nos ilustra sobre este tema.

Los metales (III). El hierro.

Filed under: Metales — Escuela Nicaragua 231 @ 11:30 pm

El hierro es un elemento químico de número atómico 26 situado en el grupo 8 de la tabla periódica de los elementos. Su símbolo es Fe.

Este metal de transición es el cuarto elemento más abundante en la corteza terrestre, representando un 5% y, entre los metales, sólo el aluminio es más abundante. Igualmente es uno de los elementos más importantes del Universo, y el núcleo de la Tierra está formado principalmente por hierro y níquel, generando al moverse un campo magnético. Ha sido históricamente muy importante, y un período de la historia recibe el nombre de Edad de Hierro.

Es un metal maleable, tenaz, de color gris plateado y presenta propiedades magnéticas; es ferromagnético a temperatura ambiente y presión atmosférica.

Se encuentra en la naturaleza formando parte de numerosos minerales, entre ellos muchos óxidos, y raramente se encuentra libre. Para obtener hierro en estado elemental, los óxidos se reducen con carbono y luego es sometido a un proceso de refinado para eliminar las impurezas presentes.

El siguiente video nos hace algunos comentarios sobre este metal.

Los metales (II). El bronce.

Filed under: Metales — Escuela Nicaragua 231 @ 11:28 pm

Bronce es el nombre con el que se denomina toda una serie de aleaciones metálicas que tienen como base el cobre, combinado con un 3 a 20% de estaño y proporciones variables de otros metales como zinc, aluminio, antimonio,o fósforo. Los elementos con características de dureza superiores al cobre permiten mejorar sus propiedades mecánicas.

Fue la primera aleación de importancia obtenida por el hombre, definiendo el período prehistórico conocido como Edad de bronce. Sus aplicaciones incluyen partes mecánicas resistentes al roce y a la corrosión, instrumentos musicales de buena calidad como campanas, gongs, saxofones, y se la utiliza así mismo para fabricar cuerdas de pianos, arpas y guitarras. Durante milenios fue la aleación básica para la fabricación de armas y utensilios, y orfebres de todas las épocas lo han utilizado en joyería, medallas y escultura. Las monedas acuñadas con aleaciones de bronce tuvieron un protagonismo relevante en el comercio y la economía mundial.

El siguiente video nos comenta algo sobre el bronce.

Técnicas de Conformación (III). Laminación.

Filed under: Metales — Escuela Nicaragua 231 @ 11:26 pm

La laminación es un método de mecanizado utilizado para crear láminas o chapa de metal. Este proceso metalúrgico se puede realizar con varios tipos de máquinas. La elección de la máquina más adecuada va en función del tipo de lámina que se desea obtener (espesor y longitud) y de la naturaleza y características del metal. La máquina más común es de simples rodillos, por entre los cuales se introduce el metal a altas temperaturas y se deforma hasta obtener el espesor deseado.

También es posible la laminación a temperaturas bajas (laminado en frío). En este caso la relación de espesor de entrada a los rodillos frente al espesor de salida es menor que en el caso de laminado en caliente, necesitándose varias pasadas hasta completar el proceso. Es habitual utilizar en este caso laminadores reversibles. La calidad del laminado en frío suele ser mayor que la laminación en caliente, ya que es posible tomar medidas de espesores, realizando así un mejor control del proceso.

El siguiente video nos ilustra el proceso de laminación.

Así se hace… El papel de aluminio.

Filed under: Metales — Escuela Nicaragua 231 @ 11:24 pm

El papel aluminio (conocido también como papel plateado) es una hoja fina de aluminio que, a consecuencia de ello, es extremadamente maleable y permite numerosos usos en la vida cotidiana, entre las que está la de poder hacer de envoltorio de diversos objetos. conductor de electricidad y se utiliza también como papel de embalaje para envolver alimentos. En España se conoce popularmente como “papel Albal” por la marca Albal, que lo comercializa. Millones de toneladas de papel de aluminio se emplean a diario en todo el mundo en el embalaje y protección de alimentos, cosméticos y productos químicos diversos. Por regla general con una capa extremadamente delgada que suele rondar desde los 20 µm a los 6.5 µm, en algunos casos es laminado con otros materiales tales como plástico o papel.

El siguiente video nos ilustra el proceso de fabricación.

Técnicas de Conformación (II). Forja.

Filed under: Metales — Escuela Nicaragua 231 @ 11:21 pm

La forja es el arte y el lugar de trabajo del forjador o herrero, cuyo trabajo consiste en dar forma al metal por medio del fuego y del martillo.

Una forja contiene básicamente una fragua para calentar los metales (normalmente compuestos de hierro), un yunque y un recipiente en el cual se pueden enfriar rápidamente las piezas forjadas para templarlas. Las herramientas incluyen tenazas para coger el hierro caliente y martillos para golpear el metal caliente.

En la forja se modela el metal por deformación plástica y es diferente de otros trabajos del hierro en los que se retira o elimina parte del material mediante brocas, fresadoras, torno, etc., y de otros procesos por los que se da forma al metal fundido vertiéndolo dentro de un molde (fundición).

El siguiente video nos muestra el proceso de conformación mediante forja.

Técnicas de Conformación (I). Embutición.

Filed under: Metales — Escuela Nicaragua 231 @ 11:20 pm

Embutición es el proceso de conformado en frio por el que se transforma una chapa plana en un cuerpo hueco adaptandola a la forma definida por la matriz del util, mediante la presion ejercida por la prensa. Se trata de un proceso de conformado de chapa por deformacion plastica en el curso de el cual la chapa sufre simultaneamente transformaciones por estirado y por recalcado produciendose variaciones en su espesor.

El siguiente video nos muestra el proceso:

Así se hace… El papel (II)

Filed under: Madera-Papel — Escuela Nicaragua 231 @ 11:15 pm

Documentándome sobre la técnica del fabricación del papel me topé con esta animación institucional del la papelera finlandesa BOTNIA (aprovecho para incluirla para completar la entrada Así se hace… El papel). Resulta que la construcción de una fábrica de obtención de pasta de celulosa ha generado (y sigue latente a fecha de la publicación de este post) un conflicto diplomático entre dos paises que son Argentina y Uruaguay. En pocas palabras la papelera finlandesa BOTNIA y el gobierno uruguayo cerraron un acuerdo para construir una planta de obtención de pasta de papel en los alrededores de la población de Fray Bentos situada a la orilla del rio Uruguay (en la frontera de ambos paises) provocando la inmediata reacción de Argentina que se va a comer el marrón de la contaminación que se pueda producir sin obtener ningún beneficio a cambio. En fin la cosa está que arde e incluso el Rey Juan Carlos ha intentado mediar sin mucho éxito.

Si quieres saber más al respecto de la situación en los siguiente enlaces tendrás cumplida información:

La visión ecologista. – La visión de la empresa. – La visión del conflicto según Wikipedia.

Sin duda, esta es la parte oscura del desarrollo tecnológico, a saber, el efecto del hombre y sus procesos industriales sobre el medio ambiente. Aquí vemos que el desarrollo no siempre es bienvenido.

Pero bueno no nos desviemos del tema que más nos interesa, la explicación del proceso productivo. Para eso el siguiente video de la empresa papelera BOTNIA:

Asi se hace… El papel

Filed under: Madera-Papel — Escuela Nicaragua 231 @ 11:14 pm

El papel es una fina capa de fibras vegetales entrelazadas entre sí formando un paño que tiene la propiedad de ser resistente, perdurable en el tiempo, con la capacidad de absorber la humedad, ligero y aislante del calor y la humedad. En el siguiente video aprenderemos como se produce, desde el tronco hasta el papel de fotocopiadora.

Así se hace… Muebles de aglomerado.

Filed under: Madera-Papel — Escuela Nicaragua 231 @ 11:12 pm

Uno de los principales derivados de la madera son los tableros de artificiales, que son más económicos que la madera natural, son más planos y lisos y de mayor tamaño y prácticamente no se deforman. Fundamentalmente pueden ser de tres tipos contrachapado, aglomerado o prensado. El siguiente video nos mostrará el proceso de fabricación de los tableros de aglomerado y como se fabrican muebles con este material.

Así se hace… Tablas de madera.

Filed under: Madera-Papel — Escuela Nicaragua 231 @ 11:11 pm

a madera es un material orgánico natural y con una estructura celular; se llama madera al conjunto de tejidos que forman el tronco, las Raíces y las Ramas. Pocos materiales poseen la capacidad de evocación de la madera. Durante miles de años el hombre la ha manipulado para que sirviera a sus necesidades y, aún en nuestros días, tipologías ancestrales continúan siendo válidas. La madera fue uno de los primeros materiales utilizados por el hombre para construcción de viviendas, herramientas para cazar, fabricación de utensilios, etc. Por supuesto en la actualidad aún tiene muchísimas aplicaciones. El siguiente video nos mostrará el viaje que experimenta el tronco del árbol una vez que llega al aserradero.

Así se hace… Una puerta de madera

Filed under: Madera-Papel — Escuela Nicaragua 231 @ 11:10 pm

En el siguiente video nos muestra el proceso de fabricación de una puerta. Desde el descortezado del tronco, pasando por el contrachado del núcleo hasta el proceso de biselado, pintado y acabado. Es es otra de las aplicaciones principales de la madera. Hasta ahora todos hemos visto, tocado, abierto y cerrado una puerta, después de ver este video también sabremos como se hacen.